

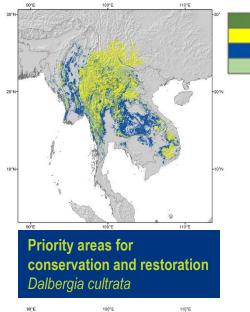
Alliance

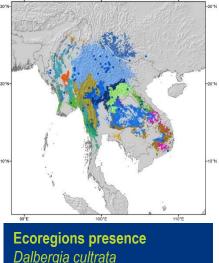
Range-wide vulnerability mapping to identify species specific priority areas for conservation and restoration

Hannes Gaisberger, Alliance Bioversity Int. and CIAT 6 December 2021, Final virtual workshop

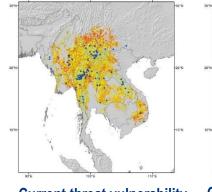
Introduction

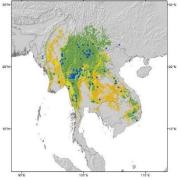
- Multiple anthropogenic threats drive local extinction of tropical tree species
- In addition to **global warming**, forest habitats in the Greater Mekong are being rapidly destroyed by **industrial-scale (illegal) logging and agricultural expansion**
- The resulting **loss of genetic diversity limits** the opportunities to **restore viable populations** and reduces the species' ability to **adapt to a changing environment**


Methods



(Gaisberger et al. 2017; Fremout et al. 2020)


Key threat	Indicators	Spatial layers				
Over- exploitation	Human population density	Human population density (Landscan, 2016)				
	Travel time to cities	Travel time to cities (Weiss et al., 2018)				
	Presence/ absence of a	Designated protected areas (UNEP-WCMC, 2016), updated with protected areas for				
	protected area	Cambodia provided by contributing species experts				
Fire	Fire frequency	NASA Fire Information for Resource Management System (FIRMS). MODIS Active Fire				
		Detections from 2013 to 2017 (NASA EOSDIS, 2018)				
Overgrazing	Cattle, goat and sheep	Gridded Livestock of the World v2.0 (Robinson et al., 2014)				
	density					
Habitat conversion	Percentage of cropland	Land cover share database (GLC-SHARE, 2014)				
	coverage					
	Percentage of planted forests	Tree Plantations (Harris et al., 2018) for Cambodia				
	and tree crops					
Climate change		SDMs projected to future climate conditions (2041-2060 period) using 5 Global Circulation				
	Loss of suitable habitat	Models (Eyring et al., 2016) with maximized dissimilarity and three shared socio-economic				
		pathways (SSP126, SSP245 and SSP585), downloaded from the WorldClim website				


Ecoregional zoning

In situ conservation Restoration activities Ex situ conservation No priority actions

Current threat vulnerability

Climate change vulnerability

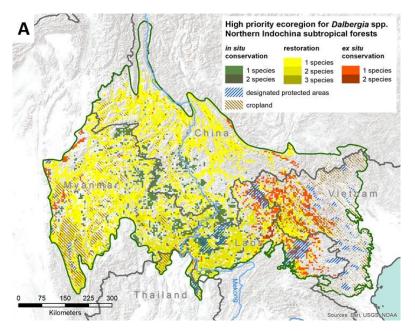
- Based on threat levels (current threats and climate change) we identified species-specific priority areas for conservation and restoration
- We subdivided these areas by ecoregions (Dinerstein et al., 2017) as surrogate for genetic diversity to capture adaptive variation within species
- Ecoregions were defined as high priority for conservation (of adaptive variation) when less than 10% of the potential distribution area was 'stable' and within protected areas = CONSERVATION TARGET

Alliance

Results (species level)

- All three species face significant threat levels in more than 80% of their natural range
- Protected areas cover only 11-20% of the species' predicted ranges
- **Overexploitation** is the single most important threat (67-69%), followed by **fire** (31-40%) and **habitat conversion** (19-39%)
- **Dalbergia cultrata is severely threatened by climate change** (39%); less effects on *D. oliveri* (5%) and on *D. cochinchinensis* (0%)*

Species	Predicted suitable habitat (km²)	Predicted suitable habitat in protected areas (%)	Prioritised for in situ (%)	Prioritised for ex situ (%)	Prioritised for restoration (%)
Siamese Rosewood (<i>D. cochinchinensis</i>)	406,332	20	10	0	56
Burma Blackwood (D. cultrata)	1,077,207	11	6	29	27
Burmese Rosewood (D. oliveri)	961,460	17	9	3	51


Proportion of suitable habitat prioritized for conservation and restoration

*Hung et al., 2020

Results (intraspecific level)

- About half of the ecoregions were classified as high priority for improving the conservation of adaptive variation
- None of the species is sufficiently protected within individual ecoregions in individual countries

			Predicted distribution %		Priority for in situ		Priority for restoration		Priority for ex situ	
Ecoregion	Country	Species	Km ²	% protected	protected and stable	% of total area	% in protected areas	% of total area	% in natural habitats	% of total area
Northern Indochina	Indochina sub- tropical Laos, Myanmar, Thailand, Vietnam	D. cochinchinensis	427	6	6	-		47	89	-
sub- tropical forests		D. cultrata	331,123	3	2	19	8	41	87	3
		D. oliveri	106,988	8	5	2	24	40	86	16

Alliance

Recommendations

IN SITU conservation

Additional protected areas in most suitable areas/habitats. High genetic differentiation* = conservation needs to expand also in underrepresented areas to avoid loss of unique adaptations

RESTORATION activities

Outside of the current protected area network is necessary for recovering and maintaining adaptive variation within species across large parts of their ranges

EX SITU conservation

Focus on areas where climate threat levels are high but current threat levels are low = likely to find viable remnant populations

- Spatial analysis to complement field studies in targeting areas with high potential for conservation and restoration and most synergies between species and countries within ecoregions
- Better targeting saves resources (incl. Time) which is important in the race against local extinctions of *Dalbergia* spp. and other severely threatened species

For species specific vulnerability and priority action maps please visit https://www.tree-diversity.org/

*Hartvig et al., 2018

Hannes Gaisberget ssociate Scientist/ PhD stude

h.gaisberger@cgiar.o

NAFRI

ASIA PACIFIC FOREST GENETIC

CGIAF

RESEARCH PROGRAM ON Forests, Trees and Agroforestry

Alliance